Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36671925

RESUMO

Aquaculture is an expanding economic sector that nourishes the world's growing population due to its nutritional significance over the years as a source of high-quality proteins. However, it has faced severe challenges due to significant cases of environmental pollution, pathogen outbreaks, and the lack of traceability that guarantees the quality assurance of its products. Such context has prompted many researchers to work on the development of novel, affordable, and reliable technologies, many based on nanophotonic sensing methodologies. These emerging technologies, such as surface plasmon resonance (SPR), localised SPR (LSPR), and fibre-optic SPR (FO-SPR) systems, overcome many of the drawbacks of conventional analytical tools in terms of portability, reagent and solvent use, and the simplicity of sample pre-treatments, which would benefit a more sustainable and profitable aquaculture. To highlight the current progress made in these technologies that would allow them to be transferred for implementation in the field, along with the lag with respect to the most cutting-edge plasmonic sensing, this review provides a variety of information on recent advances in these emerging methodologies that can be used to comprehensively monitor the various operations involving the different commercial stages of farmed aquaculture. For example, to detect environmental hazards, track fish health through biochemical indicators, and monitor disease and biosecurity of fish meat products. Furthermore, it highlights the critical issues associated with these technologies, how to integrate them into farming facilities, and the challenges and prospects of developing plasmonic-based sensors for aquaculture.


Assuntos
Técnicas Biossensoriais , Animais , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Aquicultura , Controle de Qualidade , Tecnologia de Fibra Óptica
2.
Materials (Basel) ; 14(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921175

RESUMO

There is increasing interest in developing portable technologies to detect human health threats through hybrid materials that integrate specific bioreceptors. This work proposes an electrochemical approach for detecting 3-Phenoxybenzaldehyde (3-PBD), a biomarker for monitoring human exposure to pyrethroid pesticides. The biosensor uses laccase enzymes as an alternative recognition element by direct oxidation of 3-PBD catalysts by the enzyme onto thin-film gold electrodes. The thin-film gold electrode modified by the immobilized laccase was characterized by Fourier-transform infrared spectrometry and scanning electron microscopy. The detection method's electrochemical parameters were established, obtaining a linear range of 5 t 50 µM, the limit of detection, and quantification of 0.061 and 2.02 µM, respectively. The proposed biosensor's analytical performance meets the concentration of pyrethroids detected in natural environments, reflecting its potential as an alternative analytical tool for monitoring the pyrethroid insecticide's presence.

3.
Biosensors (Basel) ; 11(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572259

RESUMO

Chlorophene is an important antimicrobial agent present in disinfectant products which has been related to health and environmental effects, and its detection has been limited to chromatographic techniques. Thus, there is a lack of research that attempts to develop new analytical tools, such as biosensors, that address the detection of this emerging pollutant. Therefore, a new biosensor for the direct detection of chlorophene in real water is presented, based on surface plasmon resonance (SPR) and using a laccase enzyme as a recognition element. The biosensor chip was obtained by covalent immobilization of the laccase on a gold-coated surface through carbodiimide esters. The analytical parameters accomplished resulted in a limit of detection and quantification of 0.33 mg/L and 1.10 mg/L, respectively, fulfilling the concentrations that have already been detected in environmental samples. During the natural river's measurements, no significant matrix effects were observed, obtaining a recovery percentage of 109.21% ± 7.08, which suggested that the method was suitable for the fast and straightforward analysis of this contaminant. Finally, the SPR measurements were validated with an HPLC method, which demonstrated no significant difference in terms of precision and accuracy, leading to the conclusion that the biosensor reflects its potential as an alternative analytical tool for the monitoring of chlorophene in aquatic environments.


Assuntos
Técnicas Biossensoriais , Diclorofeno/análogos & derivados , Anti-Infecciosos , Carbodi-Imidas/análise , Diclorofeno/análise , Ouro , Limite de Detecção , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...